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Abstract
Using a new powerful technique based on the notion of megaideal, we construct
a complete set of inequivalent realizations of real Lie algebras of dimension no
greater than four in vector fields on a space of an arbitrary (finite) number of
variables. Our classification amends and essentially generalizes earlier works
on the subject.

PACS numbers: 02.20.Sv, 02.30.Jr, 02.40.Vh

1. Introduction

The description of Lie algebra representations by vector fields was first considered by S Lie.
However, this problem is still of great interest and widely applicable, particularly to integrate
ordinary differential equations [25, 26] (see also some new results and trends in this area,
e.g. in [1, 7, 9, 32, 33, 53, 54, 63–65]), group classification of partial differential equations
[4, 16, 69], classification of gravity fields of a general form under the motion groups or
groups of conformal transformations [18–20, 34, 48]. (See, e.g., [14, 16] for other physical
applications of realizations of Lie algebras.) Thus, without exaggeration, this problem has a
major place in modern group analysis of differential equations.

In spite of its importance for applications, the problem of a complete description of
realizations has not been solved even for the cases when either the dimension of algebras or
the dimension of realization space is a fixed small integer. An exception is Lie’s classification
of all possible Lie groups of point transformations acting on the two-dimensional complex or
real space without fixed points [24, 27], which is equivalent to classification of all possible
realizations of Lie algebras in vector fields on the two-dimensional complex (real) space (see
also [14]).

In this paper we construct a complete set of inequivalent realizations of real Lie algebras
of dimension no greater than four in vector fields on a space of an arbitrary (finite) number of
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variables. For solving this problem, we propose a new powerful technique based on the notion
of megaideal.

The plan of the paper is as follows. Results on classifications of abstract Lie algebras
are reviewed in section 2. In section 3 we give necessary definitions and statements on
megaideals and realizations of Lie algebras, which form the theoretical basis of our technique.
Previous results on classifications of realizations are reviewed in section 4. In this section we
also explain the notation, abbreviations and conventions used and describe the classification
technique. The results of our classification are formulated in the form of tables 1–5. An
example of classification of realizations for a four-dimensional algebra is discussed in detail
in section 5. In section 6 we compare our results with those of [64]. Section 7 contains a
discussion.

2. On classification of Lie algebras

The necessary step to classify realizations of Lie algebras is classification of these algebras, i.e.
classification of possible commutative relations between basis elements. By the Levi–Maltsev
theorem any finite-dimensional Lie algebra over a field of characteristic 0 is a semi-direct
sum (the Levi–Maltsev decomposition) of the radical (its maximal solvable ideal) and a semi-
simple subalgebra (called the Levi factor) (see, e.g., [17]). This result reduces the task of
classifying all Lie algebras to the following problems:

(1) classification of all semi-simple Lie algebras;
(2) classification of all solvable Lie algebras;
(3) classification of all algebras that are semi-direct sums of semi-simple Lie algebras and

solvable Lie algebras.

Of the problems listed above, only that of classifying all semi-simple Lie algebras is
completely solved in the well-known Cartan theorem: any semi-simple complex or real Lie
algebra can be decomposed into a direct sum of ideals which are simple subalgebras being
mutually orthogonal with respect to the Cartan–Killing form. Thus, the problem of classifying
semi-simple Lie algebras is equivalent to that of classifying all non-isomorphic simple Lie
algebras. This classification is known (see, e.g., [3, 8]).

To the best of our knowledge, the problem of classifying solvable Lie algebras is
completely solved only for Lie algebras of dimension up to and including six (see, for example,
[36–39, 59, 60]). Below we briefly list some results on classification of low-dimensional Lie
algebras.

All the possible complex Lie algebras of dimension �4 were listed by Lie himself [27].
In 1918 Bianchi investigated three-dimensional real Lie algebras [5]. Considerably later this
problem was again considered by Lee [22] and Vranceanu [62], and their classifications are
equivalent to the one by Bianchi. Using Lie’s results on complex structures, Kruchkovich
[18–20] classified four-dimensional real Lie algebras which do not contain three-dimensional
Abelian subalgebras.

A complete, correct and easy to use classification of real Lie algebras of dimension �4 was
first obtained by Mubarakzyanov [37] (see also citation of these results as well as description of
subalgebras and invariants of real low-dimensional Lie algebras in [46, 47]). Analogous results
are given in [48]. Namely, after citing classifications of Bianchi [5] and Kruchkovich [18],
Petrov classified four-dimensional real Lie algebras containing three-dimensional Abelian
ideals.

In a series of papers [38–40] Mubarakzyanov continued his investigations of
solvable algebras. He classified five-dimensional solvable real Lie algebras as well as
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six-dimensional ones with one linearly independent non-nilpotent element. Let us note
that for six-dimensional solvable real Lie algebras, dimension m of the nilradical is greater
than or equal to 3. In the case m = 3 such algebras are decomposable. Classification
of six-dimensional nilpotent Lie algebras (m = 6) was obtained by Umlauf [66] over
a complex field and generalized by Morozov [36] to the case of an arbitrary field of
characteristic 0.

In [59, 61] Turkowski classified all real Lie algebras of dimension up to nine, which
admit non-trivial Levi decomposition. Turkowski [60] also completed Mubarakzyanov’s
classification of six-dimensional solvable Lie algebras over R, by classifying real Lie algebras
of dimension six that contain four-dimensional nilradical (m = 4).

The recent results and references on seven-dimensional nilpotent Lie algebras can be
found in [55].

In the case when the dimension of algebra is not fixed sufficiently general results were
obtained only in classification of algebras having some special algebras (e.g. Abelian [42],
Heisenberg [52] or triangular algebras [57]) as their nilradical. Invariants of these algebras,
i.e. their generalized Casimir operators, were investigated in [41, 43, 57, 58].

3. Megaideals and realizations of Lie algebras

Now we define the notion of megaideal that is useful for constructing realizations and proving
their inequivalence in a simpler way. Let A be an m-dimensional (real or complex) Lie algebra
(m ∈ N) and let Aut(A) and Int(A) denote the groups of all the automorphisms of A and of
its inner automorphisms, respectively. The Lie algebra of the group Aut(A) coincides with
the Lie algebra Der(A) of all the derivations of the algebra A. (A derivation D of A is called
a linear mapping from A into itself which satisfy the condition D[u, v] = [Du, v] + [u,Dv]
for all u, v ∈ A.) Der(A) contains as an ideal the algebra Ad(A) of inner derivations of
A, which is the Lie algebra of Int(A). (The inner derivation corresponding to u ∈ A is
the mapping ad u: v → [v, u].) Fixing a basis {eµ, µ = 1,m} in A, we associate an
arbitrary linear mapping l : A → A (e.g. an automorphism or a derivation of A) with a
matrix α = (ανµ)mµ,ν=1 by means of the expanding l(eµ) = ανµeν. Then each group of
automorphisms of A being associated with a subgroup of the general linear group GL(m) of
all the non-degenerated m × m matrices (over R or C) as well as each algebra of derivations
of A being associated with a subalgebra of the general linear algebra gl(m) of all the m × m

matrices.

Definition. We call a vector subspace of A, which is invariant under any transformation from
Aut(A), a megaideal of A.

Since Int(A) is a normal subgroup of Aut(A), it is clear that any megaideal of A is
a subalgebra and, moreover, an ideal in A. But when Int(A) �= Aut(A) (e.g. for nilpotent
algebras) there exist ideals in A which are not megaideals. Moreover, any megaideal I of A

is invariant with respect to all the derivations of A: Der(A)I ⊂ I, i.e. it is a characteristic
subalgebra. Characteristic subalgebras which are not megaideals can exist only if Aut(A) is a
disconnected Lie group.

Both improper subsets of A (the empty set and A itself) are always megaideals in A. The
following lemmas are obvious.

Lemma 1. If I1 and I2 are megaideals of A then so are I1 + I2, I1 ∩ I2 and [I1, I2], i.e. sums,
intersections and Lie products of megaideals are also megaideals.



7340 R O Popovych et al

Corollary 1. All the members of the low and upper central series of A, i.e. all the derivatives
A(n) and all the powers An (A(n) = [A(n−1), A(n−1)], An = [A,An−1], A(0) = A0 = A) are
megaideals in A.

This corollary follows from lemma 1 by induction since A is a megaideal in A.

Lemma 2. The radical (i.e. the maximal solvable ideal) and the nil-radical (i.e. the maximal
nilpotent ideal) of A are its megaideals.

The above lemmas give a number of invariant subspaces of all the automorphisms in A

and, therefore, simplify calculating Aut(A).

Example 1. Let mA1 denote the m-dimensional Abelian algebra. Aut(mA1) coincides with
the group of all the non-degenerated linear transformations of the m-dimensional linear space
(∼GL(m)) and Int(mA1) contains only the identical transformation. Any vector subspace
in the Abelian algebra mA1 is a subalgebra and an ideal in mA1 and is not a characteristic
subalgebra or a megaideal. Therefore, the Abelian algebra mA1 does not contain proper
megaideals.

Example 2. Let us fix the canonical basis {e1, e2, e3} in the algebra A = A2.1 ⊕ A1 [37], in
which only the two first elements have the non-zero commutator [e1, e2] = e1. In this basis

Aut(A) ∼






α11 α12 0
0 1 0
0 α32 α33




∣∣∣∣∣∣
α11α33 �= 0


 Int(A) ∼







eε1 ε2 0
0 1 0
0 0 1




∣∣∣∣∣∣
ε1, ε2 ∈ R




Der(A) ∼
〈


1 0 0
0 0 0
0 0 0


 ,




0 1 0
0 0 0
0 0 0


 ,




0 0 0
0 0 0
0 1 0


 ,




0 0 0
0 0 0
0 0 1



〉

Ad(A) ∼
〈


1 0 0
0 0 0
0 0 0


 ,




0 1 0
0 0 0
0 0 0



〉

.

A complete set of Int(A)-inequivalent proper subalgebras of A is exhausted by the following
ones [46]:

one-dimensional: 〈e2 + βe3〉, 〈e1 ± e3〉, 〈e1〉, 〈e3〉;
two-dimensional: 〈e1, e2 + βe3〉, 〈e1, e3〉, 〈e2, e3〉.

Among them only 〈e1〉, 〈e3〉, 〈e1, e3〉 are megaideals, 〈e1, e2 + βe3〉 is an ideal and is not a
characteristic subalgebra (and, therefore, a megaideal).

Example 3. Consider the algebra A = A−1
3.4 from the series Aa

3.4,−1 � a < 1, a �= 0
[37]. The non-zero commutators of its canonical basis elements are [e1, e3] = e1 and
[e2, e3] = −e2. Aut(A) is not connected for this algebra:

Aut(A) ∼






α11 0 α13

0 α22 α23

0 0 1




∣∣∣∣∣∣
α11α22 �= 0




⋃






0 α12 α13

α21 0 α23

0 0 −1




∣∣∣∣∣∣
α12α21 �= 0




Int(A) ∼






eε1 0 ε2

0 e−ε1 ε3

0 0 1




∣∣∣∣∣∣
ε1, ε2, ε3 ∈ R
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Der(A) ∼
〈


1 0 0
0 0 0
0 0 0


 ,




0 0 0
0 1 0
0 0 0


 ,




0 0 0
0 0 0
0 0 1


 ,




0 0 0
0 0 1
0 0 0



〉

Ad(A) ∼
〈


1 0 0
0 −1 0
0 0 0


 ,




0 0 1
0 0 0
0 0 0


 ,




0 0 0
0 0 1
0 0 0



〉

.

A complete set of Int(A)-inequivalent proper subalgebras of A is exhausted by the following
ones [46]:

one-dimensional: 〈e1〉, 〈e2〉, 〈e3〉, 〈e1 ± e2〉;
two-dimensional: 〈e1, e2〉, 〈e1, e3〉, 〈e2, e3〉.

Among them only 〈e1, e2〉 is a megaideal, 〈e1〉 and 〈e2〉 are characteristic subalgebras and
are not megaideals, 〈e1, e3〉 and 〈e2, e3〉 are ideals and are not characteristic subalgebras.

Let M denote a n-dimensional smooth manifold and Vect(M) denote the Lie algebra of
smooth vector fields (i.e. first-order linear differential operators) on M with the Lie bracket of
vector fields as a commutator. Here and below smoothness means analyticity.

Definition. A realization of a Lie algebra A in vector fields on M is called a homomorphism
R:A → Vect(M). The realization is said to be faithful if ker R = {0} and unfaithful otherwise.
Let G be a subgroup of Aut(A). The realizations R1:A → Vect(M1) and R2:A → Vect(M2)

are called G-equivalent if there exist ϕ ∈ G and a diffeomorphism f from M1 to M2 such that
R2(v) = f∗R1(ϕ(v)) for all v ∈ A. Here f∗ is the isomorphism from Vect(M1) to Vect(M2)

induced by f. If G contains only the identical transformation, the realizations are called
strongly equivalent. The realizations are weakly equivalent if G = Aut(A). A restriction of
the realization R on a subalgebra A0 of the algebra A is called a realization induced by R and
is denoted as R|A0 .

Within the framework of the local approach that we use M can be considered as an open
subset of R

n and all the diffeomorphisms are local.
Usually realizations of a Lie algebra have been classified with respect to the weak

equivalence. This is reasonable although the equivalence used in the representation theory is
similar to the strong one. The strong equivalence is better suited for construction of realizations
of algebras using realizations of their subalgebras and is verified in a simpler way than the
weak equivalence. It is not specified in some papers which equivalence has been used, and
this results in classification mistakes.

To classify realizations of a m-dimensional Lie algebra A in the most direct way, we
have to take m linearly independent vector fields of the general form ei = ξ ia(x)∂a, where
∂a = ∂/∂xa, x = (x1, x2, . . . , xn) ∈ M, and require them to satisfy the commutation
relations of A. As a result, we obtain a system of first-order PDEs for the coefficients
ξ ia and integrate it, considering all the possible cases. For each case we transform the
solution into the simplest form, using either local diffeomorphisms of the space of x and
automorphisms of A if the weak equivalence is meant or only local diffeomorphisms of the
space of x for the strong equivalence. A drawback of this method is the necessity to solve a
complicated nonlinear system of PDEs. Another way is to classify sequentially realizations of
a series of nested subalgebras of A, starting with a one-dimensional subalgebra and ending up
with A.

Let V be a subset of Vect(M) and r(x) = dim〈V (x)〉, x ∈ M. 0 � r(x) � n. The general
value of r(x) on M is called the rank of V and is denoted as rank V.
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Lemma 3. Let B be a subset and R1 and R2 be realizations of the algebra A. If R1(B)

and R2(B) are inequivalent with respect to endomorphisms of Vect(M) generated by
diffeomorphisms on M, then R1 and R2 are strongly inequivalent.

Corollary 2. If there exists a subset B of A such that rank R1(B) �= rank R2(B) then the
realizations R1 and R2 are strongly inequivalent.

Lemma 4. Let I be a megaideal and R1 and R2 be realizations of the algebra A. If R1|I and
R2|I are Aut(A)|I -inequivalent then R1 and R2 are weakly inequivalent.

Corollary 3. If R1|I and R2|I are weakly inequivalent then R1 and R2 also are weakly
inequivalent.

Corollary 4. If there exists a megaideal I of A such that rank R1(I ) �= rank R2(I ) then the
realizations R1 and R2 are weakly inequivalent.

Remark. In this paper we consider faithful realizations only. If the faithful realizations
of Lie algebras of dimensions less than m are known, the unfaithful realizations of
m-dimensional algebras can be constructed in an easy way. Indeed, each unfaithful realization
of m-dimensional algebra A, having the kernel I, yields a faithful realization of the quotient
algebra A/I of dimension less than m. This correspondence is well-defined since the kernel
of any homomorphism from an algebra A to an algebra A′ is an ideal in A.

4. Realizations of low-dimensional real Lie algebras

The most important and elegant results on realizations of Lie algebras were obtained by
Lie himself. He classified non-singular Lie algebras of vector fields in one real variable,
one complex variable and two complex variables [23, 24]. Using an ingenious geometric
argument, Lie also listed the Lie algebras of vector fields in two real variables [27, vol 3]
(a more complete discussion can be found in [14]). Finally, in [27, vol 3] he claimed to have
completely classified all Lie algebras of vector field in three complex variables (in fact he
gives details in the case of primitive algebras, and divides the imprimitive cases into three
classes, of which only the first two are treated [14]).

Using Lie’s classification of Lie algebras of vector fields in two complex variables,
González-López et al [15] studied finite-dimensional Lie algebras of first-order differential
operators Q = ξ i(x)∂xi

+ f (x) and classified all such algebras with two complex variables.
In [32] Mahomed and Leach investigated realizations of three-dimensional real Lie

algebras in terms of Lie vector fields in two variables and used them for treating third-order
ODEs. Analogous realizations for four-dimensional real Lie algebras without commutative
three-dimensional subalgebras were considered by Schmucker and Czichowski [53].

All the possible realizations of algebra so(3) in the real vectors fields were first classified in
[21, 71]. Covariant realizations of physical algebras (Galilei, Poincaré and Euclid ones) were
constructed in [10, 12, 13, 21, 28, 29, 67, 70, 71]. A complete description of realizations of
the Galilei algebra in the space of two dependent and two independent variables was obtained
in [51, 68]. In [50], Post studied finite-dimensional Lie algebras of polynomial vector fields
of n variables that contain the vector fields ∂xi

(i = 1, n) and xi∂xi
.

Wafo Soh and Mahomed [64] used Mubarakzyanov’s results [37] in order to classify
realizations of three- and four-dimensional real Lie algebras in the space of three variables
and to describe systems of two second-order ODEs admitting real four-dimensional symmetry
Lie algebras, but unfortunately their paper contains some misprints and incorrect statements
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Table 1. Realizations of one- and two-dimensional real Lie algebras.

Algebra N Realization

A1 1 ∂1

2A1 1 ∂1, ∂2

2 ∂1, x2∂1

A2.1 1 ∂1, x1∂1 + ∂2

[e1, e2] = e1 2 ∂1, x1∂1

(see section 6 of our paper). Therefore, this classification cannot be regarded as complete.
The results of [64] are used in [65] to solve the problem of linearization of systems of second-
order ordinary differential equations, so some results from [65] also are not completely correct.

A preliminary classification of realizations of solvable three-dimensional Lie algebras
in the space of any (finite) number of variables was given in [30]. Analogous results on a
complete set of inequivalent realizations for real four-dimensional solvable Lie algebras were
announced at the Fourth International Conference ‘Symmetry in Nonlinear Mathematical
Physics’ (Kyiv, 9–15 July 2001) and were published in the proceedings of this conference
[31, 44].

In this paper we present final results of our classifications of realizations of all the Lie
algebras of dimension up to 4. On account of theim being cumbersome we adduce only
classification of realizations with respect to weak equivalence because it is more complicated
to obtain, is more suitable for applications and can be presented in a more compact form. The
results are formulated in tables 1–5. Below equivalence indicates weak equivalence.

Remarks for tables 1–5. We use the following notation, contractions and agreements.

• We treat Mubarakzyanov’s classification of abstract Lie algebras and follow, in general, his
numeration of Lie algebras. For each algebra we write down only non-zero commutators
between the basis elements. ∂i is shorthand for ∂/∂xi. R(A, N) denotes the Nth realization
of the algebra A corresponding to position in the table, and the algebra symbol A can be
omitted if is clear which algebra is meant. If it is necessary we also point out parameter
symbol α1, . . . , αk in the designation R(A,N, (α1, . . . , αk)) of series of realizations.

• The constant parameters of series of solvable Lie algebras (e.g., Ab
4.2) are denoted as

a, b or c. All the other constants as well as the functions in tables 1–5 are parameters of
realization series. The functions are arbitrary differentiable real-valued functions of their
arguments, satisfying only the conditions given in the remarks column after the respective
table. The presence of such a remark for a realization is marked in the last column of
the table. All the constants are real. The constant ε takes only two values 0 or 1, i.e.
ε ∈ {0; 1}. The conditions for the other constant parameters of realization series are given
in remarks after the corresponding table.

• For each series of solvable Lie algebras we list, at first, the ‘common’ inequivalent
realizations (more precisely, the inequivalent realizations series parametrized with the
parameters of algebra series) existing for all the allowed values of the parameters of algebra
series. Then, we list the ‘specific’ realizations which exist or are inequivalent to ‘common’
realizations only for some ‘specific’ sets of values of the parameters. Numeration of
‘specific’ realizations for each ‘specific’ set of values of the parameters is a continuation
of that for ‘common’ realizations.



7344 R O Popovych et al

Table 2. Realizations of three-dimensional real solvable Lie algebras.

Algebra N Realization (∗)

3A1 1 ∂1, ∂2, ∂3

2 ∂1, ∂2, x3∂1 + x4∂2

3 ∂1, ∂2, x3∂1 + ϕ(x3)∂2 (∗)

4 ∂1, x2∂1, x3∂1

5 ∂1, x2∂1, ϕ(x2)∂1 (∗)

A2.1 ⊕ A1 1 ∂1, x1∂1 + ∂3, ∂2

[e1, e2] = e1 2 ∂1, x1∂1 + x3∂2, ∂2

3 ∂1, x1∂1, ∂2

4 ∂1, x1∂1 + x2∂2, x2∂1

A3.1 1 ∂1, ∂2, x2∂1 + ∂3

[e2, e3] = e1 2 ∂1, ∂2, x2∂1 + x3∂2

3 ∂1, ∂2, x2∂1

A3.2 1 ∂1, ∂2, (x1 + x2)∂1 + x2∂2 + ∂3

[e1, e3] = e1 2 ∂1, ∂2, (x1 + x2)∂1 + x2∂2

[e2, e3] = e1 + e2 3 ∂1, x2∂1, x1∂1 − ∂2

A3.3 1 ∂1, ∂2, x1∂1 + x2∂2 + ∂3

[e1, e3] = e1 2 ∂1, ∂2, x1∂1 + x2∂2

[e2, e3] = e2 3 ∂1, x2∂1, x1∂1 + ∂3

4 ∂1, x2∂1, x1∂1

Aa
3.4, |a|�1, a �=0, 1 1 ∂1, ∂2, x1∂1 + ax2∂2 + ∂3

[e1, e3] = e1 2 ∂1, ∂2, x1∂1 + ax2∂2

[e2, e3] = ae2 3 ∂1, x2∂1, x1∂1 + (1 − a)x2∂2

Ab
3.5, b � 0 1 ∂1, ∂2, (bx1 + x2)∂1 + (−x1 + bx2)∂2 + ∂3

[e1, e3] = be1 − e2 2 ∂1, ∂2, (bx1 + x2)∂1 + (−x1 + bx2)∂2

[e2, e3] = e1 + be2 3 ∂1, x2∂1, (b − x2)x1∂1 − (
1 + x2

2

)
∂2

• In all the conditions of algebra equivalence, which are given in the remarks following the
tables, (αµν) is a non-degenerate (r × r)-matrix, where r is the dimension of the algebra
under consideration.

• The summation over repeated indices is implied unless stated otherwise.

Remarks on the series A4,5 and A4,6. Consider the algebra series
{
A

a1,a2,a3
4,5

∣∣ a1a2a3 �= 0
}

generated by the algebras for which the non-zero commutation relations have the form
[e1, e4] = a1e1, [e2, e4] = a2e2, [e3, e4] = a3e3. Two algebras from this series, with the
parameters (a1, a2, a3) and (ã1, ã2, ã3) are equivalent iff there exist a real λ �= 0 and a
permutation (j1, j2, j3) of the set {1; 2; 3} such that the condition ãi = λaji

(i = 1, 3) is
satisfied. For the algebras under consideration to be inequivalent, one has to constrain the set
of parameter values. There are different ways of doing this. A traditional way [7, 37, 46, 47,
64] is to apply the condition −1 � a2 � a3 � a1 = 1. But this condition is not sufficient
to select inequivalent algebras since the algebras A

1,−1,b
4,5 and A

1,−1,−b
4,5 are equivalent in spite

of their parameters satisfying the above constraining condition if |b| � 1. The additional
condition a3 � 0 if a2 = −1 guarantees for the algebras with constrained parameters to be
inequivalent.

Moreover, it is convenient for us to break the parameter set into three disjoint subsets
depending on the number of equal parameters. Each of these subsets is normalized individually.
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Table 3. Realizations of real decomposable solvable four-dimensional Lie algebras.

Algebra N Realization (∗)

4A1 1 ∂1, ∂2, ∂3, ∂4

2 ∂1, ∂2, ∂3, x4∂1 + x5∂2 + x6∂3

3 ∂1, ∂2, ∂3, x4∂1 + x5∂2 + θ(x4, x5)∂3 (∗)

4 ∂1, ∂2, ∂3, x4∂1 + ϕ(x4)∂2 + ψ(x4)∂3 (∗)

5 ∂1, ∂2, x3∂1 + x4∂2, x5∂1 + x6∂2

6 ∂1, ∂2, x3∂1 + x4∂2, x5∂1 + θ(x3, x4, x5)∂2 (∗)

7 ∂1, ∂2, x3∂1 + ϕ(x3, x4)∂2, x4∂1 + ψ(x3, x4)∂2 (∗)

8 ∂1, ∂2, x3∂1 + ϕ(x3)∂2, θ(x3)∂1 + ψ(x3)∂2 (∗)

9 ∂1, x2∂1, x3∂1, x4∂1

10 ∂1, x2∂1, x3∂1, θ(x2, x3)∂1 (∗)

11 ∂1, x2∂1, ϕ(x2)∂1, ψ(x2)∂1 (∗)

A2.1 ⊕ 2A1 1 ∂1, x1∂1 + ∂4, ∂2, ∂3

2 ∂1, x1∂1 + x4∂2 + x5∂3, ∂2, ∂3

[e1, e2] = e1 3 ∂1, x1∂1 + x4∂2 + ϕ(x4)∂3, ∂2, ∂3 (∗)

4 ∂1, x1∂1, ∂2, ∂3

5 ∂1, x1∂1 + x3∂3, ∂2, x3∂1 + x4∂2

6 ∂1, x1∂1 + x3∂3, ∂2, x3∂1

7 ∂1, x1∂1 + ∂4, ∂2, x3∂2

8 ∂1, x1∂1 + x4∂2, ∂2, x3∂2

9 ∂1, x1∂1 + ϕ(x3)∂2, ∂2, x3∂2 (∗)

10 ∂1, x1∂1 + x2∂2 + x3∂3, x2∂1, x3∂1

2A2.1 1 ∂1, x1∂1 + ∂3, ∂2, x2∂2 + ∂4

2 ∂1, x1∂1 + ∂3, ∂2, x2∂2 + x4∂3

[e1, e2] = e1 3 ∂1, x1∂1 + ∂3, ∂2, x2∂2 + C∂3 (∗)

[e3, e4] = e3 4 ∂1, x1∂1 + x3∂2, ∂2, x2∂2 + x3∂3

5 ∂1, x1∂1, ∂2, x2∂2

6 ∂1, x1∂1 + x2∂2, x2∂1, −x2∂2 + ∂3

7 ∂1, x1∂1 + x2∂2, x2∂1, −x2∂2

A3.1 ⊕ A1 1 ∂1, ∂3, x3∂1 + ∂4, ∂2

2 ∂1, ∂3, x3∂1 + x4∂2 + x5∂3, ∂2

[e2, e3] = e1 3 ∂1, ∂3, x3∂1 + ϕ(x4)∂2 + x4∂3, ∂2 (∗)

4 ∂1, ∂3, x3∂1 + x4∂2, ∂2

5 ∂1, ∂3, x3∂1, ∂2

6 ∂1, ∂3, x3∂1 + ∂4, x2∂1

7 ∂1, ∂3, x3∂1 + x4∂3, x2∂1

8 ∂1, ∂3, x3∂1 + ϕ(x2)∂3, x2∂1 (∗)

A3.2 ⊕ A1 1 ∂1, ∂2, (x1 + x2)∂1 + x2∂2 + ∂3, ∂4

2 ∂1, ∂2, (x1 + x2)∂1 + x2∂2 + ∂3, x4∂3

[e1, e3] = e1 3 ∂1, ∂2, (x1 + x2)∂1 + x2∂2, ∂3

[e2, e3] = e1 + e2 4 ∂1, ∂2, (x1 + x2)∂1 + x2∂2 + ∂3, x4e
x3 (x3∂1 + ∂2)

5 ∂1, ∂2, (x1 + x2)∂1 + x2∂2 + ∂3, e
x3 (x3∂1 + ∂2)

6 ∂1, ∂2, (x1 + x2)∂1 + x2∂2 + ∂3, e
x3 ∂1

7 ∂1, x2∂1, x1∂1 − ∂2, ∂3

8 ∂1, x2∂1, x1∂1 − ∂2, x3e
−x2 ∂1

9 ∂1, x2∂1, x1∂1 − ∂2, e
−x2 ∂1

A3.3 ⊕ A1 1 ∂1, ∂2, x1∂1 + x2∂2 + ∂3, ∂4

2 ∂1, ∂2, x1∂1 + x2∂2 + ∂3, x4∂3

[e1, e3] = e1 3 ∂1, ∂2, x1∂1 + x2∂2, ∂3
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Table 3. (Continued.)

Algebra N Realization (∗)

[e2, e3] = e2 4 ∂1, ∂2, x1∂1 + x2∂2 + ∂3, e
x3 (∂1 + x4∂2)

5 ∂1, ∂2, x1∂1 + x2∂2 + ∂3, e
x3 ∂1

6 ∂1, x2∂1, x1∂1 + ∂3, ∂4

7 ∂1, x2∂1, x1∂1 + ∂3, x4∂3

8 ∂1, x2∂1, x1∂1 + ∂3, ϕ(x2)∂3 (∗)

9 ∂1, x2∂1, x1∂1 + ∂3, e
x3 ∂1

Aa
3.4 ⊕ A1 1 ∂1, ∂2, x1∂1 + ax2∂2 + ∂3, ∂4

|a| � 1, a �= 0, 1 2 ∂1, ∂2, x1∂1 + ax2∂2 + ∂3, x4∂3

[e1, e3] = e1 3 ∂1, ∂2, x1∂1 + ax2∂2, ∂3

[e2, e3] = ae2 4 ∂1, ∂2, x1∂1 + ax2∂2 + ∂3, e
x3 ∂1 + x4e

ax3 ∂2

5 ∂1, ∂2, x1∂1 + ax2∂2 + ∂3, e
x3 ∂1 + eax3 ∂2

6 ∂1, ∂2, x1∂1 + ax2∂2 + ∂3, e
x3 ∂1

7 ∂1, x2∂1, x1∂1 + (1 − a)x2∂2, ∂3

8 ∂1, x2∂1, x1∂1 + (1 − a)x2∂2, x3|x2|
1

1−a ∂1

9 ∂1, x2∂1, x1∂1 + (1 − a)x2∂2, |x2|
1

1−a ∂1

a �= −1 10 ∂1, ∂2, x1∂1 + ax2∂2 + ∂3, e
ax3 ∂2

Ab
3.5 ⊕ A1, b � 0 1 ∂1, ∂2, (bx1 + x2)∂1 + (−x1 + bx2)∂2 + ∂3, ∂4

2 ∂1, ∂2, (bx1 + x2)∂1 + (−x1 + bx2)∂2 + ∂3, x4∂3

[e1, e3] = be1 − e2 3 ∂1, ∂2, (bx1 + x2)∂1 + (−x1 + bx2)∂2, ∂3

[e2, e3] = e1 + be2 4 ∂1, ∂2, (bx1 + x2)∂1 + (−x1 + bx2)∂2 + ∂3, x4e
bx3 (cos x3∂1 − sin x3∂2)

5 ∂1, ∂2, (bx1 + x2)∂1 + (−x1 + bx2)∂2 + ∂3, e
bx3 (cos x3∂1 − sin x3∂2)

6 ∂1, x2∂1, (b − x2)x1∂1 − (
1 + x2

2

)
∂2, ∂3

7 ∂1, x2∂1, (b − x2)x1∂1 − (
1 + x2

2

)
∂2, x3

√
1 + x2

2e−b arctan x2 ∂1

8 ∂1, x2∂1, (b − x2)x1∂1 − (
1 + x2

2

)
∂2,

√
1 + x2

2e−b arctan x2 ∂1

As a result we obtain three inequivalent cases:

a1 = a2 = a3 = 1

a1 = a2 = 1 a3 �= 1, 0

−1 � a1 < a2 < a3 = 1 a2 > 0 if a1 = −1.

An analogous remark is true also for the algebra series
{
A

a,b
4,6

∣∣ a �= 0
}

generated by the
algebras for which the non-zero commutation relations have the form [e1, e4] = ae1, [e2, e4] =
be2 −e3, [e3, e4] = e2 +be3. Two algebras from this series with the different parameters (a, b)

and (ã, b̃) are equivalent iff ã = −a, b̃ = −b. A traditional way of constraining the set of
parameter values is to apply the condition b � 0 that does not exclude the equivalent algebras
of the form A

a,0
4,6 and A

−a,0
4,6 from consideration. That is why it is more correct to use the

condition a > 0 as a constraining relation for the parameters of this series.

The technique of classification is as follows:

• For each algebra A from Mubarakzyanov’s classification [37] of abstract Lie algebras of
dimension m � 4 we find the automorphism group Aut(A) and the set of megaideals
of A. (Our notions of low-dimensional algebras, choice of their basis elements and,
consequently, the form of commutative relations coincide with Mubarakzyanov’s ones.)
Calculation of this step is quite simple due to low dimensions and simplicity of the
canonical commutation relations. Lemmas 1 and 2, corollary 1 and other similar
statements are useful for such calculations. See also the remarks below.
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Table 4. Realizations of real indecomposable solvable four-dimensional Lie algebras.

Algebra N Realization (∗)

A4.1 1 ∂1, ∂2, ∂3, x2∂1 + x3∂2 + ∂4

[e2, e4] = e1 2 ∂1, ∂2, ∂3, x2∂1 + x3∂2 + x4∂3

[e3, e4] = e2 3 ∂1, ∂2, ∂3, x2∂1 + x3∂2

4 ∂1, ∂2, x3∂1 + x4∂2, x2∂1 + x4∂3 − ∂4

5 ∂1, ∂2, − 1
2 x2

3∂1 + x3∂2, x2∂1 − ∂3

6 ∂1, x2∂1, ∂3, x2x3∂1 − ∂2

7 ∂1, x2∂1, x3∂1,−∂2 − x2∂3

8 ∂1, x2∂1,
1
2 x2

2∂1, −∂2

Ab
4.2, b �= 0 1 ∂1, ∂2, ∂3, bx1∂1 + (x2 + x3)∂2 + x3∂3 + ∂4

[e1, e4] = be1 2 ∂1, ∂2, ∂3, bx1∂1 + (x2 + x3)∂2 + x3∂3

[e2, e4] = e2 3 ∂1, ∂2, x4∂1 + x3∂2, bx1∂1 + x2∂2 + (b − 1)x4∂4 − ∂3

[e3, e4] = e2 + e3 4 ∂1, ∂2, x3∂2, bx1∂1 + x2∂2 − ∂3

5 ∂1, x2∂1, ∂3, (bx1 + x2x3)∂1 + (b − 1)x2∂2 + x3∂3

6 ∂1, x2∂1, x3∂1, bx1∂1 + (b − 1)x2∂2 + ((b − 1)x3 − x2)∂3

b �= 1 7 ∂1, ∂2, e
(1−b)x3 ∂1 + x3∂2, bx1∂1 + x2∂2 − ∂3

8 ∂1, x2∂1,
x2

1−b
ln |x2|∂1, bx1∂1 + (b − 1)x2∂2

b = 1 7 ∂1, x2∂1, ∂3, (x1 + x2x3)∂1 + x3∂3 + ∂4

A4.3 1 ∂1, ∂2, ∂3, x1∂1 + x3∂2 + ∂4

[e1, e4] = e1 2 ∂1, ∂2, ∂3, x1∂1 + x3∂2 + x4∂3

[e3, e4] = e2 3 ∂1, ∂2, ∂3, x1∂1 + x3∂2

4 ∂1, ∂2, x3∂1 + x4∂2, x1∂1 + x3∂3 − ∂4

5 ∂1, ∂2, εe
−x3 ∂1 + x3∂2, x1∂1 − ∂3

6 ∂1, x2∂1, ∂3, (x1 + x2x3)∂1 + x2∂2

7 ∂1, x2∂1, x3∂1, x1∂1 + x2∂2 + (x3 − x2)∂3

8 ∂1, x2∂1,−x2 ln |x2|∂1, x1∂1 + x2∂2

A4.4 1 ∂1, ∂2, ∂3, (x1 + x2)∂1 + (x2 + x3)∂2 + x3∂3 + ∂4

[e1, e4] = e1 2 ∂1, ∂2, ∂3, (x1 + x2)∂1 + (x2 + x3)∂2 + x3∂3

[e2, e4] = e1 + e2 3 ∂1, ∂2, x3∂1 + x4∂2, (x1 + x2)∂1 + x2∂2 + x4∂3 − ∂4

[e3, e4] = e2 + e3 4 ∂1, ∂2, − 1
2 x2

3∂1 + x3∂2, (x1 + x2)∂1 + x2∂2 − ∂3

5 ∂1, x2∂1, ∂3, (x1 + x2x3)∂1 − ∂2 + x3∂3

6 ∂1, x2∂1, x3∂1, x1∂1 − ∂2 − x2∂3

7 ∂1, x2∂1,
1
2 x2

2∂1, x1∂1 − ∂2

A
a,b,c
4.5 , abc �= 0 1 ∂1, ∂2, ∂3, ax1∂1 + bx2∂2 + cx3∂3 + ∂4

[e1, e4] = ae1 2 ∂1, ∂2, ∂3, ax1∂1 + bx2∂2 + cx3∂3

[e2, e4] = be2 3 ∂1, ∂2, x3∂1 + x4∂2, ax1∂1 + bx2∂2 + (a − c)x3∂3 + (b − c)x4∂4

[e3, e4] = ce3 4 ∂1, x2∂1, x3∂1, ax1∂1 + (a − b)x2∂2 + (a − c)x3∂3

a = b = c = 1 5 ∂1, ∂2, x3∂1 + x4∂2, x1∂1 + x2∂2 + ∂5

6 ∂1, ∂2, x3∂1 + ϕ(x3)∂2, x1∂1 + x2∂2 + ∂4 (∗)

7 ∂1, ∂2, x3∂1 + ϕ(x3)∂2, x1∂1 + x2∂2 (∗)

8 ∂1, x2∂1, x3∂1, x1∂1 + ∂4

9 ∂1, x2∂1, ϕ(x2)∂1, x1∂1 + ∂3 (∗)

10 ∂1, x2∂1, ϕ(x2)∂1, x1∂1 (∗)

a = b = 1, c �= 1 5 ∂1, x2∂1, ∂3, x1∂1 + cx3∂3 + ∂4

6 ∂1, x2∂1, ∂3, x1∂1 + cx3∂3

7 ∂1, ∂2, e
(1−c)x3 ∂1, x1∂1 + x2∂2 + ∂3

−1 � a < b < c = 1 5 ∂1, ∂2, ε1e
(a−1)x3 ∂1 + ε2e

(b−1)x3 ∂2, ax1∂1 + bx2∂2 + ∂3 (∗)

b > 0 if a = −1 6 ∂1, x2∂1, ∂3, ax1∂1 + (a − b)x2∂2 + x3∂3

7 ∂1, e
(a−b)x2 ∂1, e

(a−1)x2 ∂1, ax1∂1 + ∂2



7348 R O Popovych et al

Table 4. (Continued.)

Algebra N Realization (∗)

A
a,b
4.6 , a > 0 1 ∂1, ∂2, ∂3, ax1∂1 + (bx2 + x3)∂2 + (−x2 + bx3)∂3 + ∂4

[e1, e4] = ae1 2 ∂1, ∂2, ∂3, ax1∂1 + (bx2 + x3)∂2 + (−x2 + bx3)∂3

[e2, e4] = be2 − e3 3 ∂1, ∂2, x3∂1 + x4∂2, (ax1 − x2x3)∂1 + (b − x4)x2∂2 +
[e3, e4] = e2 + be3 (a − b − x4)x3∂3 − (

1 + x2
4

)
∂4

4 ∂1, ∂2, εe
(b−a) arctan x3

√
1 + x2

3∂1 + x3∂2,(
ax1 − εx2e

(b−a) arctan x3
√

1 + x2
3

)
∂1 + (b − x3)x2∂2 − (

1 + x2
3

)
∂3

5 ∂1, x2∂1, x3∂1, ax1∂1 + ((a − b)x2 + x3)∂2 + (−x2 + (a − b)x3)∂3

6 ∂1, e
(a−b)x2 cos x2∂1, −e(a−b)x2 sin x2∂1, ax1∂1 + ∂2

A4.7 1 ∂1, ∂2, x2∂1 + ∂3,
(
2x1 + 1

2 x2
3

)
∂1 + (x2 + x3)∂2 + x3∂3 + ∂4

[e2, e3] = e1 2 ∂1, ∂2, x2∂1 + ∂3,
(
2x1 + 1

2 x2
3

)
∂1 + (x2 + x3)∂2 + x3∂3

[e1, e4] = 2e1 3 ∂1, ∂2, x2∂1 + x3∂2, 2x1∂1 + x2∂2 − ∂3

[e2, e4] = e2 4 ∂1, x2∂1, −∂2,
(
2x1 − 1

2 x2
2

)
∂1 + x2∂2 + ∂3

[e3, e4] = e2 + e3 5 ∂1, x2∂1, −∂2,
(
2x1 − 1

2 x2
2

)
∂1 + x2∂2

Ab
4.8, |b| � 1 1 ∂1, ∂2, x2∂1 + ∂3, (1 + b)x1∂1 + x2∂2 + bx3∂3 + ∂4

[e2, e3] = e1 2 ∂1, ∂2, x2∂1 + ∂3, (1 + b)x1∂1 + x2∂2 + bx3∂3

[e1, e4] = (1 + b)e1 3 ∂1, ∂2, x2∂1 + x3∂2, (1 + b)x1∂1 + x2∂2 + (1 − b)x3∂3

[e2, e4] = e2 4 ∂1, ∂2, x2∂1, (1 + b)x1∂1 + x2∂2 + ∂3

[e3, e4] = be3 5 ∂1, ∂2, x2∂1, (1 + b)x1∂1 + x2∂2

b = 1 6 ∂1, ∂2, x2∂1 + x3∂2, 2x1∂1 + x2∂2 + ∂4

b = −1 6 ∂1, ∂2, x2∂1 + ∂3, x4∂1 + x2∂2 − x3∂3

7 ∂1, ∂2, x2∂1, x3∂1 + x2∂2

b �= ±1 6 ∂1, x2∂1, −∂2, (1 + b)x1∂1 + bx2∂2 + ∂3

7 ∂1, x2∂1, −∂2, (1 + b)x1∂1 + bx2∂2

b = 0 8 ∂1, ∂2, x2∂1 + ∂3, x1∂1 + x2∂2 + x4∂3

9 ∂1, ∂2, x2∂1 + ∂3, x1∂1 + x2∂2 + C∂3 (∗)

Aa
4.9, a � 0 1 ∂1, ∂2, x2∂1 + ∂3,

1
2

(
4ax1 + x2

3 − x2
2

)
∂1 + (ax2 + x3)∂2 + (−x2 + ax3)∂3 + ∂4

[e2, e3] = e1

[e1, e4] = 2ae1 2 ∂1, ∂2, x2∂1 + ∂3,
1
2

(
4ax1 + x2

3 − x2
2

)
∂1 + (ax2 + x3)∂2 + (−x2 + ax3)∂3

[e2, e4] = ae2 − e3

[e3, e4] = e2 + ae3 3 ∂1, ∂2, x2∂1 + x3∂2,
(
2ax1 − 1

2 x2
2

)
∂1 + (a − x3)x2∂2 − (

1 + x2
3

)
∂3

a = 0 4 ∂1, ∂2, x2∂1 + ∂3,
1
2

(
x2

3 − x2
2 + 2x4

)
∂1 + x3∂2 − x2∂3

A4.10 1 ∂1, ∂2, x1∂1 + x2∂2 + ∂3, x2∂1 − x1∂2 + ∂4

[e1, e3] = e1 2 ∂1, ∂2, x1∂1 + x2∂2 + ∂3, x2∂1 − x1∂2 + x4∂3

[e2, e3] = e2 3 ∂1, ∂2, x1∂1 + x2∂2 + ∂3, x2∂1 − x1∂2 + C∂3 (∗)

[e1, e4] = −e2 4 ∂1, x2∂1, x1∂1 + ∂3, −x1x2∂1 − (
1 + x2

2

)
∂2

[e2, e4] = e1 5 ∂1, ∂2, x1∂1 + x2∂2, x2∂1 − x1∂2 + ∂3

6 ∂1, ∂2, x1∂1 + x2∂2, x2∂1 − x1∂2

7 ∂1, x2∂1, x1∂1, −x1x2∂1 − (
1 + x2

2

)
∂2

• We choose a maximal proper subalgebra B of A. As a rule, the dimension of B is equal
to m − 1. So, if A is solvable, it necessarily contains a (m − 1)-dimensional ideal. The
simple algebra sl(2, R) has a two-dimensional subalgebra. The Levi factors of unsolvable
four-dimensional algebras (sl(2, R) ⊕ A1 and so(3) ⊕ A1) are three-dimensional ideals
of these algebras. Only so(3) does not contain a subalgebra of dimension m − 1 = 2
that is a cause of difficulty in constructing realizations for this algebra. Moreover, the
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Table 5. Realizations of real unsolvable three- and four-dimensional Lie algebras.

Algebra N Realization

sl(2, R) 1 ∂1, x1∂1 + x2∂2, x
2
1∂1 + 2x1x2∂2 + x2∂3

[e1, e2] = e1 2 ∂1, x1∂1 + x2∂2,
(
x2

1 − x2
2

)
∂1 + 2x1x2∂2

[e2, e3] = e3 3 ∂1, x1∂1 + x2∂2,
(
x2

1 + x2
2

)
∂1 + 2x1x2∂2

[e1, e3] = 2e2 4 ∂1, x1∂1 + x2∂2, x
2
1∂1 + 2x1x2∂2

5 ∂1, x1∂1, x
2
1∂1

sl(2, R) ⊕ A1 1 ∂1, x1∂1 + x2∂2, x
2
1∂1 + 2x1x2∂2 + x2∂3, ∂4

[e1, e2] = e1 2 ∂1, x1∂1 + x2∂2, x
2
1∂1 + 2x1x2∂2 + x2∂3, x2∂1 + 2x2x3∂2 +

(
x2

3 + x4
)
∂3

[e2, e3] = e3 3 ∂1, x1∂1 + x2∂2, x
2
1∂1 + 2x1x2∂2 + x2∂3, x2∂1 + 2x2x3∂2 +

(
x2

3 + c
)
∂3, c ∈ {−1; 0; 1}

[e1, e3] = 2e2 4 ∂1, x1∂1 + x2∂2,
(
x2

1 + x2
2

)
∂1 + 2x1x2∂2, ∂3

5 ∂1, x1∂1 + x2∂2,
(
x2

1 − x2
2

)
∂1 + 2x1x2∂2, ∂3

6 ∂1, x1∂1 + x2∂2, x
2
1∂1 + 2x1x2∂2, ∂3

7 ∂1, x1∂1 + x2∂2, x
2
1∂1 + 2x1x2∂2, x2x3∂2

8 ∂1, x1∂1 + x2∂2, x
2
1∂1 + 2x1x2∂2, x2∂2

9 ∂1, x1∂1, x
2
1∂1, ∂2

so(3) 1 −sin x1 tan x2∂1 − cos x1∂2, −cos x1 tan x2∂1 + sin x1∂2, ∂1

[e2, e3] = e1 2 −sin x1 tan x2∂1 − cos x1∂2 + sin x1 sec x2∂3,
[e3, e1] = e2 −cos x1 tan x2∂1 + sin x1∂2 + cos x1 sec x2∂3, ∂1

[e1, e2] = e3

so(3) ⊕ A1 1 −sin x1 tan x2∂1 − cos x1∂2, −cos x1 tan x2∂1 + sin x1∂2, ∂1, ∂3

[e2, e3] = e1 2 −sin x1 tan x2∂1 − cos x1∂2 + sin x1 sec x2∂3,
[e3, e1] = e2 −cos x1 tan x2∂1 + sin x1∂2 + cos x1 sec x2∂3, ∂1, ∂3

[e1, e2] = e3 3 −sin x1 tan x2∂1 − cos x1∂2 + sin x1 sec x2∂3,
−cos x1 tan x2∂1 + sin x1∂2 + cos x1 sec x2∂3, ∂1, x4∂3

4 −sin x1 tan x2∂1 − cos x1∂2 + sin x1 sec x2∂3,
− cos x1 tan x2∂1 + sin x1∂2 + cos x1 sec x2∂3, ∂1, ∂4

algebras sl(2, R), so(3),mA1, A3.1, A3.1 ⊕A1 and 2A2.1 exhaust the list of algebras under
consideration that do not contain (m − 1)-dimensional megaideals.

• Let us suppose that a complete list of weakly inequivalent realizations of B has already
been constructed. (If B is a megaideal of A and realizations of A are classified only
with respect to the weak equivalence, it is sufficient to use only Aut(A)|B-inequivalent
realizations of B.) For each realization R(B) from this list we use the following procedure.
We find the set DiffR(B) of local diffeomorphisms of the space of x, which preserve R(B).

Then, we realize the basis vector ei (or the basis vectors in the case of so(3)) from A\B
in the most general form ei = ξ ia(x)∂a, where ∂a = ∂/∂xa, and require that it satisfies
the commutation relations of A with the basis vectors from R(B). As a result, we obtain
a system of first-order PDEs for the coefficients ξ ia and integrate it, considering all
possible cases. For each case we reduce the found solution to the simplest form, using
either diffeomorphisms from DiffR(B) and automorphisms of A if the weak equivalence
is meant or only diffeomorphisms from DiffR(B) for the strong equivalence.

• The last step is to test the inequivalence of the constructed realizations. We associate the
Nth one of them with the ordered collection of integers (rNj ), where rNj is equal to the
rank of the elements of Sj in the realization R(A,N). Here Sj is either the j th subset
of the basis of A with |Sj | > 1 in the case of strong equivalence or the basis of the j th
megaideals Ij of A with dim Ij > 1 in the case of weak equivalence. Inequivalence of
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realizations with different associated collections of integers immediately follows from
corollary 2 or corollary 4, respectively. Inequivalence of realizations in the pairs with
identical collections of ranks is proved using another method, e.g. Casimir operators
(for simple algebras), lemmas 2 and 3, corollary 3 and the rule of contraries (see the
following section).

We rigorously proved the inequivalence of all the constructed realizations. Moreover, we
compared our classification with the results of the papers cited in the beginning of the section
(see section 6 for details of the comparison with the results of one of them).

Remark. Another interesting method to construct realizations of Lie algebras in vector fields
was proposed by Shirokov [56]. This method is also simple to use and is based on classification
of subalgebras of Lie algebras.

Remark. The automorphisms of semi-simple algebras are well-known [17]. The
automorphism groups of four-dimensional algebras were published in [6].

Remarks for table 2.

R(3A1, 3, ϕ). ϕ = ϕ(x3). The realizations R(3A1, 3, ϕ) and R(3A1, 3, ϕ̃) are equivalent iff

x̃3 = −(α11x3 + α12ϕ(x3) − α13)/(α31x3 + α32ϕ(x3) − α33)

ϕ̃ = −(α21x3 + α22ϕ(x3) − α23)/(α31x3 + α32ϕ(x3) − α33).
(1)

R(3A1, 5, ϕ). ϕ = ϕ(x2), ϕ
′′ �= 0. The realizations R(3A1, 5, ϕ) and R(3A1, 5, ϕ̃) are

equivalent iff

x̃2 = −(α21x2 + α22ϕ(x2) − α23)/(α11x2 + α12ϕ(x2) − α13)

ϕ̃ = −(α31x2 + α32ϕ(x2) − α33)/(α11x2 + α12ϕ(x2) − α13).
(2)

Remarks for table 3.

R(4A1, 3, θ). θ = θ(x4, x5). The realizations R(4A1, 3, θ) and R(4A1, 3, θ̃ ) are equivalent
iff

ξ̃ a = −(ξbαba − α4a)/(ξ
cαc4 − α44) (3)

where ξ 1 = x4, ξ
2 = x5, ξ

3 = θ(x4, x5), ξ̃
1 = x̃4, ξ̃

2 = x̃5, ξ̃
3 = θ̃ (x̃4, x̃5), a, b, c= 1, 3.

R(4A1, 4, (ϕ, ψ)). ϕ = ϕ(x4), ψ = ψ(x4). The realizations R(4A1, 4, (ϕ, ψ)) and
R(4A1, 4, (ϕ̃, ψ̃)) are equivalent iff condition (3) is satisfied, where ξ 1 = x4, ξ

2 =
ϕ(x4), ξ

3 = ψ(x4), ξ̃ 1 = x̃4, ξ̃
2 = ϕ̃(x̃4), ξ̃

3 = ψ̃(x̃4).

R(4A1, 6, θ). θ = θ(x3, x4, x5). The realizations R(4A1, 3, θ) and R(4A1, 3, θ̃ ) are equivalent
iff

(ξ ikαk,2+j − α2+i,2+j )ξ̃
j l = −(ξ ikαkl − α2+i,l) (4)

where ξ 11 = x3, ξ
12 = x4, ξ

21 = x5, ξ
22 = θ(x3, x4, x5), ξ̃ 11 = x̃3, ξ̃

12 = x̃4, ξ̃ 21 = x̃5, ξ̃
22 =

θ̃ (x̃3, x̃4, x̃5), i, j, k, l = 1, 2.

R(4A1, 7, (ϕ, ψ)). ϕ = ϕ(x3, x4), ψ = ψ(x3, x4). The realizations R(4A1, 7, (ϕ, ψ))

and R(4A1, 7, (ϕ̃, ψ̃)) are equivalent iff condition (4) is satisfied, where ξ 11 = x3, ξ
12 =

ϕ(x3, x4), ξ
21 = x4, ξ

22 = ψ(x3, x4), ξ̃ 11 = x̃3, ξ̃
12 = ϕ̃(x̃3, x̃4), ξ̃ 21 = x̃4, ξ̃

22 = ψ̃(x̃3, x̃4).

R(4A1, 8, (ϕ, ψ, θ)). ϕ = ϕ(x3), ψ = ψ(x3), θ = θ(x3), and the vector-functions
(x3, ϕ) and (θ, ψ) are linearly independent. The realizations R(4A1, 8, (ϕ, ψ, θ)) and
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R(4A1, 8, (ϕ̃, ψ̃, θ̃ )) are equivalent iff condition (4) is satisfied, where ξ 11 = x3, ξ
12 =

ϕ(x3), ξ
21 = θ(x3), ξ

22 = ψ(x3), ξ̃ 11 = x̃3, ξ̃
12 = ϕ̃(x̃3), ξ̃ 21 = θ̃ (x̃3), ξ̃

22 = ψ̃(x̃3).

R(4A1, 10, θ). θ = θ(x2, x3), and the function θ is nonlinear with respect to (x2, x3). The
realizations R(4A1, 10, θ) and R(4A1, 10, θ̃ ) are equivalent iff

(ξaα1,b+1 − αa+1,b+1)ξ̃
b = −(ξaα11 − αa1) (5)

where ξ 1 = x2, ξ
2 = x3, ξ

3 = θ(x2, x3), ξ 1 = x̃2, ξ
2 = x̃3, ξ

3 = θ̃ (x̃2, x̃3), a, b = 1, 3.

R(4A1, 11, (ϕ, θ)). ϕ = ϕ(x2), ψ = ψ(x2), and the functions 1, x2, ϕ and ψ are linearly
independent. The realizations R(4A1, 11, (ϕ, θ)) and R(4A1, 11, (ϕ̃, θ̃ )) are equivalent iff
condition (5) is satisfied, where ξ 1 = x2, ξ

2 = ϕ(x2), ξ
3 = ψ(x2), ξ 1 = x̃2, ξ

2 = ϕ̃(x̃2), ξ
3 =

ψ̃(x̃2).

R(A2.1 ⊕ 2A1, 3, ϕ). ϕ = ϕ(x4). The realizations R(A2.1⊕2A1, 3, ϕ) and R(A2.1⊕2A1, 3, ϕ̃)

are equivalent iff

x̃4 = −α23 + α33x4 + α43ϕ ϕ̃ = −α24 + α34x4 + α44ϕ

(ϕ̃ = ϕ̃(x̃4), α22 = 1, α12 = α13 = α14 = α31 = α32 = α41 = α42 = 0).

R(A2.1 ⊕ 2A1, 9, ϕ). ϕ = ϕ(x3). The realizations R(A2.1⊕2A1, 9, ϕ) and R(A2.1⊕2A1, 9, ϕ̃)

are equivalent iff

x̃3 = −(α33x3 − α43)/(α34x3 − α44) ϕ̃ = (α33 + α34x̃3)ϕ − (α23 + α24x̃3)

(ϕ̃ = ϕ̃(x̃3), α22 = 1, α12 = α13 = α14 = α31 = α32 = α41 = α42 = 0).

R(2A2.1, 3, C). |C| � 1. If C �= C̃(|C| � 1, |C̃| � 1), the realizations R(2A2.1, 3, C) and
R(2A2.1, 3, C̃) are inequivalent.

R(A3.1 ⊕ A1, 3, ϕ). ϕ = ϕ(x4). The realizations R(A3.1 ⊕ A1, 3, ϕ) and R(A3.1 ⊕ A1, 3, ϕ̃)

are equivalent iff

x̃4 = −(α22x4 − α32)/(α23x4 − α33) ϕ̃ = −(α44ϕ + α24x4 − α34)/(α23x4 − α33)

(ϕ̃ = ϕ̃(x̃4), α11 = α22α33 − α23α32, α12 = α13 = α14 = α42 = α43 = 0).

R(A3.1 ⊕ A1, 8, ϕ). ϕ = ϕ(x2). The realizations R(A3.1 ⊕ A1, 8, ϕ) and R(A3.1 ⊕ A1, 8, ϕ̃)

are equivalent iff

x̃2 = (α11x2 − α41)/α44 ϕ̃ = −(α22ϕ − α32)/(α23ϕ − α33)

(ϕ̃ = ϕ̃(x̃2), α11 = α22α33 − α23α32, α12 = α13 = α14 = α42 = α43 = 0).

R(A3.3 ⊕ A1, 8, ϕ). ϕ = ϕ(x2) �= 0. The realizations R(A3.3⊕A1, 8, ϕ) and R(A3.3⊕A1, 8, ϕ̃)

are equivalent iff

x̃2 = −(α11x2 − α21)/(α12x2 − α22) ϕ̃ = −ϕ/(α34ϕ − α44)

(ϕ̃ = ϕ̃(x̃2), α13 = α14 = α23 = α24 = α41 = α42 = α43 = 0, α33 = 1).

Remarks for table 4.

R
(
A

1,1,1
4.5 , N, ϕ

)
, N = 6, 7. ϕ = ϕ(x3). The realizations R

(
A

1,1,1
4.5 , N, ϕ

)
and R

(
A

1,1,1
4.5 , N, ϕ̃

)
are equivalent iff condition (1) is satisfied (ϕ̃ = ϕ̃(x̃3), α41 = α42 = α43 = 0).

R
(
A

1,1,1
4.5 , N, ϕ

)
, N = 9, 10. ϕ = ϕ(x2), ϕ

′′ �= 0. The realizations R
(
A

1,1,1
4.5 , N, ϕ

)
and

R
(
A

1,1,1
4.5 , N, ϕ̃

)
are equivalent iff condition (2) is satisfied (ϕ̃ = ϕ̃(x̃2), α41 = α42 = α43 = 0).
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R
(
A

a,b,c
4.5 , 5, (ε1, ε2)

)
,where −1 � a < b < c = 1, b > 0 if a = −1. εi ∈ {0; 1}, (ε1, ε2) �=

(0, 0) (three different variants are possible). All the variants are inequivalent.

R
(
A0

4.8, 9, C
)
.C �= 0

(
since R

(
A0

4.8, 9, 0
) = R

(
A0

4.8, 2
))

.

R(A4.10, 3, C).C is an arbitrary constant.

5. Example: realizations of A4 .10

We consider in detail the construction of a list of inequivalent realizations for the algebra A4.10.
The non-zero commutators between the basis elements of A4.10 are as follows:

[e1, e3] = e1 [e2, e3] = e2 [e1, e4] = −e2 [e2, e4] = e1.

The automorphism group Aut(A4.10) is generated by the basis transformations of the form
ẽµ = ανµeν, where µ, ν = 1, 4,

(ανµ) =




α11 α12 α13 α14

−σα12 σα11 −α14 α13

0 0 1 0
0 0 0 σ


 σ = ±1. (6)

The algebra A4.10 contains four non-zero megaideals:

I1 = 〈e1, e2〉 ∼ 2A1 I2 = 〈e1, e2, e3〉 ∼ A3.3 I3 = 〈e1, e2, e4〉 ∼ A0
3.5

I4 = 〈e1, e2, e3, e4〉 ∼ A4.10.

Realizations of two three-dimensional megaideals I2 and I3 can be extended by means of one
additional basis element to realizations of A4.10. To this end we use I2. This megaideal has
four inequivalent realizations R(A3.3, N) (N = 1, 4) in Lie vector fields (see table 2). Let us
emphasize that it is inessential for the algebra A3.3 which equivalence (strong or weak) has
been used for classifying realizations. For each of these realizations we perform the following
procedure. Presenting the fourth basis element in the most general form e4 = ξa(x)∂a and
commuting e4 with the other basis elements, we obtain a linear overdetermined system of first-
order PDEs for the functions ξa. Then we solve this system and simplify its general solution
by means of transformations x̃a = f a(x) (a = 1, n) which preserve the forms of e1, e2, and
e3 in the considered realization of A3.3. To find the appropriate functions f a(x), we have to
solve one more system of PDEs which results from the conditions ei |xa→x̃a

= (eif
a)(x)∂x̃a

if x̃a = f a(x), i = 1, 3. The last step is to prove inequivalence of all the constructed
realizations.

So, for the realization R(A3.3, 1) we have e1 = ∂1, e2 = ∂2, e3 = x1∂1 + x2∂2 + ∂3, and
the commutation relations imply the following system on the functions ξa:

[e1, e4] = −e2 ⇒ ξ 1
1 = 0 ξ 2

1 = −1 ξk
1 = 0

[e2, e4] = e1 ⇒ ξ 1
2 = 1 ξ 2

2 = 0 ξk
2 = 0 k = 3, n

[e3, e4] = 0 ⇒ ξ 1
3 = ξ 1 − x2 ξ 2

3 = ξ 2 + x1 ξk
3 = 0

the general solution of which can be easy found:

ξ 1 = x2 + θ1(x̂) ex3 ξ 2 = −x1 + θ2(x̂) ex3 ξk = θk(x̂) k = 3, n

where θa(a = 1, n) are arbitrary smooth functions of x̂ = (x4, . . . , xn). The form of e1, e2,

and e3 are preserved only by the transformations

x̃1 = x1 + f 1(x̂) ex3 x̃2 = x2 + f 2(x̂) ex3 x̃3 = x3 + f 3(x̂)

x̃α = f α(x̂) α = 4, n
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where f a (a = 1, n) are arbitrary smooth functions of x̂, and f α (α = 4, n) are functionally
independent. Depending on values of the parameter-functions θk (k = 3, n) there exist three
cases of possible reduction of e4 to canonical form by means of these transformations, namely,

∃ α: θα �= 0 ⇒ e4 = x2∂1 − x1∂2 + ∂4 (the realization R(A4.10, 1));
θα = 0, θ3 �= const ⇒ e4 = x2∂1 − x1∂2 + x4∂3 (the realization R(A4.10, 2));
θα = 0, θ3 = const ⇒ e4 = x2∂1 − x1∂2 + C∂3 (the realization R(A4.10, 3, C)).

Here C ia an arbitrary constant.
The calculations for other realizations of A3.3 are easier than for the first one. For each of

these realizations below we adduce in brief only the general solution of the system of PDEs
for the coefficients ξa, the transformations which preserve the forms of e1, e2 and e3 in the
considered realization of A3.3, and the respective realizations of A4.10

R(A3.3, 2): ξ 1 = x2 ξ 2 = −x1 ξk = θk(x̄) k = 3, n x̄ = (x3, . . . , xn)

x̃1 = x1 x̃2 = x2 x̃k = f k(x̄)

R(A4.10, 5) if ∃ k: θk �= 0 and R(A4.10, 6) if θk = 0.

R(A3.3, 3): ξ 1 = −x1x2 + θ1(x ′)ex3 ξ 2 = −(
1 + x2

2

)
ξk = θk(x ′)

x̃1 = x1 + f (x ′)ex3 x̃2 = x2 x̃3 = x3 + f 3(x ′) x̃α = f α(x ′)
R(A4.10, 4) k = 3, n α = 4, n x ′ = (x2, x4, x5, . . . , xn)

R(A3.3, 4): ξ 1 = −x1x2 ξ 2 = −(
1 + x2

2

)
ξk = θk(x̌) k = 3, n

x̌ = (x2, . . . , xn) x̃1 = x1 x̃2 = x2 x̃k = f k(x̌)

R(A4.10, 7).

Here θa (a = 1, n) are arbitrary smooth functions of their arguments, and f a (a = 1, n)
are such smooth functions of their arguments that the respective transformation of x is not
singular.

To prove inequivalence of the constructed realizations, we associate their Nth part with
the ordered collection of integers (rN1, rN2, rN3, rN4), where rNj = rank R(A4.10, N)|Ij

,

i.e. rNj is equal to the rank of basis elements of the megaideals Ij in the realization R(A4.10, N),

(N = 1, 7, j = 1, 4):

R(A4.10, 1) −→ (2, 3, 3, 4) R(A4.10, 2) −→ (2, 3, 3, 3)

R(A4.10, 3, C) −→ (2, 3, 3, 3) if C �= 0 and R(A4.10, 3, 0) −→ (2, 3, 2, 3)

R(A4.10, 4) −→ (1, 2, 2, 3) R(A4.10, 5) −→ (2, 2, 3, 3)

R(A4.10, 6) −→ (2, 2, 2, 2) R(A4.10, 7) −→ (1, 1, 2, 2).

Inequivalence of realizations with different associated collections of integers follows
immediately from corollary 4. The collections of ranks of megaideals coincide only for
the pairs of realizations of two forms

{R(A4.10, 2), R(A4.10, 3, C)} and {R(A4.10, 3, C), R(A4.10, 3, C̃)}
where C, C̃ �= 0. Inequivalence of realizations in these pairs is to be proved using another
method, e.g. the rule of contraries.

Let us suppose that the realizations R(A4.10, 2) and R(A4.10, 3, C) are equivalent and
let us fix their bases given in table 4. Then, by the definition of equivalence there exists an
automorphism of A4.10 ẽµ = ανµeν and a change of variables x̃a = ga(x) which transform
the basis of R(A4.10, 2) into the basis of R(A4.10, 3, C). (Here µ, ν = 1, 4, a = 1, n, and the
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matrix (ανµ) has the form (6).) For this condition to hold true, the function g3 is to satisfy the
following system of PDEs:

g3
1 = 0 g3

2 = 0 g3
3 = 1 x4g

3
3 = C

which implies the contradictory equality x4 = C. Therefore, the considered realizations are
inequivalent.

In an analogous way we obtain that the realizations R(A4.10, 3, C) and R(A4.10, 3, C̃) are
equivalent iff C = C̃.

6. Comparison of our results and those of [64]

The results of this paper include, as a particular case, realizations in three variables
x = (x1, x2, x3), which were considered in [64]. That is why it is interesting for us to
compare the lists of realizations.

In general, a result of classification may contain errors of two types:

• missing some inequivalent cases and
• including mutually equivalent cases.

Summarizing the comparison given below, we can state that errors of both types are in [64].
Namely, for three-dimensional algebras three cases are missing, one case is equivalent to
the other case, and one case can be reduced to three essentially simpler cases. For four-
dimensional algebras 34 cases are missing, 13 cases are equivalent to other cases. Such errors
are usually caused by incorrect performing of changes of variables and also shortcomings in
the algorithms employed. See other errors in the comparison list.

Below we keep the notation of [64] (L...,L...
..., X...) and our notation (A..., R(A..., . . .), e...)

for algebras, realizations and their basis elements. We list the pairs of equivalent realizations
Lk1

r.m1
and R(Ar.m2 , k2) using the shorthand notation k1 ∼ k2 as well as all the differences

of classifications. In the cases when equivalence of realizations is not obvious we give the
necessary transformations of variables and basis changes.

6.1. Three-dimensional algebras

L3.1 ∼ 3A1. 1 ∼ 1; 2 ∼ 3 (one of the parameter-functions of L3.1 can be made equal to t);
3 ∼ 4; the realization R(3A1, 5) is missing in [64].

L3.2 ∼ A2.1 ⊕ A1(X1 = −e2, X2 = e1, X3 = e3). 1 ∼ 3; 2 ∼ 1; the series of realizations
L3

3.2 with two parameter-functions f and g can be reduced to three realizations:

R(A2.1 ⊕ A1, 2) iff ′ �= 0 (x1 = y − xg(t)/f (t), x2 = ln |x|/f (t), x3 = 1/f (t)),

R(A2.1 ⊕ A1, 3) iff ′ = 0 and f �= 0 (x1 = y − xg(t)/f, x2 = ln |x|/f, x3 = t,

X1 = −e2 − (1/f )e3, X2 = e1, X3 = e3), which coincides with L1
3.2,

R(A2.1 ⊕ A1, 4) iff = 0 and, therefore, g �= 0 (x1 = g(t)x, x2 = y, x3 = t).

L3.3 ∼ A3.1. 1 ∼ 3; 2 ∼ 2; 3 ∼ 1; 4 ∼ L1
3.3.

L3.4 ∼ A3.2. 1 ∼ 2; 2 ∼ 1; 3 ∼ 3.

L3.5 ∼ A3.3. 1 ∼ 2; 2 ∼ 1; 3 ∼ 4; 4 ∼ 3.

La
3.6 ∼ Aa

3.4. 1 ∼ 2; 2 ∼ 1; 3 ∼ 3.
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La
3.7 ∼ Aa

3.5. 1 ∼ 2; 2 ∼ 1; 3 ∼ 3.

L3.8 ∼ sl(2, R). 1 ∼ 5; 2 ∼ 1; 3 ∼ 3 (x1 = (x + t)/2, x2 = (x − t)/2); 4 ∼ 4 (x1 =
−x/t, x2 = 1/t2, x3 = y); the realization R(sl(2, R), 2) is missing in [64].

L3.9 ∼ so(3). 1 ∼ 1 (x1 = arctan t/x, x2 = arccot
√

x2 + t2, e1 = X3, e2 = −X1, e3 = X2);
the realization R(so(3), 2) is missing in [64].

6.2. Four-dimensional algebras

L4.1 ∼ 4A1. 1 ∼ 8 (one of the parameter-functions of L3.1 can be made equal to t); 2 ∼ 10;
the realization R(4A1, 11) is missing in [64].

L4.2 ∼ A2.1 ⊕ 2A1 (X1 = −e2, X2 = e1, X3 = e3, X4 = e4). 1 ∼ 10; 2 ∼ 4; 3 ∼ L2
4.2 (x̃ =

ln |t |, ỹ = y, t̃ = x/t); 4 ∼ L5
4.2(x̃ = x/t, ỹ = y, t̃ = 1/t); 5 ∼ 6; 6 ∼ 9; 7 ∼ L1

4.2
if f = 0 (x̃ = ye−x/g(t), ỹ = e−x/g(t), t̃ = te−x/g(t)) or 7 ∼ L6

4.2 if f �= 0 (x̃ =
−e−x/f (t), ỹ = y − xg(t)/f (t), t̃ = t).

L4.3 ∼ 2A2.1(X1 = −e2, X2 = e1, X3 = −e4, X4 = e3). 1 ∼ L3
4.3 (x̃ = t, ỹ = x, t̃ = y;

X̃1 = X3, X̃2 = X4, X̃3 = X1, X̃4 = X2); 2 ∼ 7; 3 ∼ 3C=0; 4 ∼ 6 (x1 = y, x2 = t, x3 =
ln |x/t |); 5 ∼ L3

4.3 (x̃ = 1/x, ỹ = y/x, t̃ = t); 6 ∼ 3C=1(x1 = y, x2 = x/t, x3 = ln |t |);
7 ∼ 4 (x1 = y, x2 = x/t, x3 = 1/t); 8 ∼ 5; the realization R(2A2.1, 3, C)(C �= 0, 1) is
missing in [64].

L4.4 ∼ A3.1 ⊕ A1. The realization L1
4.4 is a particular case of L4

4.4; 2 ∼ 5; the basis operators
of L3

4.4 do not satisfy the commutative relations of L4.4; 4 ∼ 8.

L4.5 ∼ A3.2 ⊕ A1. 1 ∼ 8(x1 = x, x2 = t, x3 = yet ); 2 ∼ 6 (x1 = x, x2 = y, x3 = ln |t |);
3 ∼ 5 (x1 = x− tye−t , x2 = ye−t , x3 = −t); 4 ∼ 3 (x1 = t, x2 = x, x3 = y); the realizations
R(A3.2 ⊕ A1, 7) and R(A3.2 ⊕ A1, 9) are missing in [64].

L1
4.6 ∼ A3.3 ⊕ A1. 1 ∼ 9 (x1 = x, x2 = t, x3 = ln |y|); 2 ∼ 5 (x1 = x, x2 = y,

x3 = ln |t |); 3 ∼ L1,2
4.6 (x̃ = y, ỹ = x, t̃ = t; X̃1 = X2, X̃2 = X1, X̃3 = −X3, X̃4 =

X4); 4 ∼ 3; 5 ∼ L1,2
4.6 (x̃ = x, ỹ = ty, t̃ = t; X̃1 = X1 + X2, X̃2 = X2, X̃3 = X3,

X̃4 = X4); the series of realizations R(A3.3 ⊕ A1, 8) are missing in [64].

La
4.6 ∼ Aa

3.4 ⊕ A1 (−1 � a < 1, a �= 0). 1 ∼ 8
(
x1 = x, x2 = t, x3 = y|t |− 1

1−a

); 2 ∼ 6(x1 =
x, x2 = y, x3 = ln |t |); 3 ∼ 10 if a �= −1

(
x1 = x, x2 = y, x3 = 1

a
ln |t |), 3 ∼ L−1,2

4.6 for
a = −1 (x̃ = y, ỹ = x, t̃ = t; X̃1 = X2, X̃2 = X1, X̃3 = X3, X̃4 = X4); 4 ∼ 3; 5 ∼ 5 (x1 =
x, x2 = yta + xta−1, x3 = ln |t |); the realizations R

(
Aa

3.4 ⊕ A1, 7
)

and R
(
Aa

3.4 ⊕ A1, 9
)

are
missing in [64].

L4.7 ∼ A0
3.5 ⊕ A1. The basis operators of L1

4.7 do not satisfy the commutative relations of
L4.7; 2 ∼ 3; 3 ∼ 5; the realizations R

(
A0

3.5 ⊕ A1, 6
)
, R

(
A0

3.5 ⊕ A1, 7
)
, and R

(
A0

3.5 ⊕ A1, 8
)

are missing in [64]; the zero value of the parameter of algebra series Aa
3.5 ⊕ A1 is not special

with respect to the construction of inequivalent realizations.

La
4.8 ∼ Aa

3.5 ⊕ A1 (a > 0). 1 ∼ 3; 2 ∼ 5 (the notation of X4 contains some misprints);
the realizations R

(
Aa

3.5 ⊕ A1, 6
)
, R

(
Aa

3.5 ⊕ A1, 7
)
, and R

(
Aa

3.5 ⊕ A1, 8
)

are missing
in [64].
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L4.9 ∼ sl(2, R)⊕ A1 (e1 = X1, e2 = X2, e3 = −X3, e4 = X4). 1 ∼ 3c=0 (x1 = t + x/(1 + y),

x2 = t/(1 + y), x3 = −y(1 + y)); 2 ∼ 4 (x1 = (t + x)/2, x2 = (t − x)/2,

x3 = y); 3 ∼ 6 (x1 = −x/t, x2 = −1/t2, x3 = y); 4 ∼ 9; the realizations
R(sl(2, R)⊕ A1, 3, c)(c = ±1), R(sl(2, R) ⊕ A1, 3, c)(c = ±1), R(sl(2, R) ⊕
A1, 5), R(sl(2, R) ⊕ A1, 7), and R(sl(2, R) ⊕ A1, 8) are missing in [64].

L4.10 ∼ so(3) ⊕ A1. 1 ∼ 1 (x1 = arctan t/x, x2 = arccot
√

x2 + t2, x3 = y, e1 = X3, e2 =
−X1, e3 = X2, e4 = X4); the realization R(so(3) ⊕ A1, 2) is missing in [64].

L4.11 ∼ A4.1. 1 ∼ 7; 2 ∼ 5; 3 ∼ 3; the realizations R(A4.1, 6) and R(A4.1, 8) are missing
in [64].

La
4.12 ∼ Aa

4.2 (a �= 0). 1 ∼ 6; 2 ∼ 4; 3 ∼ 2; 4 ∼ 7 for a �= 1 and 4 ∼ La,2
4.12 for

a = 1; the realizations R
(
Aa

4.2, 5
)
, R

(
Aa

4.2, 7
)
(a = 1), and R

(
Aa

4.2, 8
)
(a �= 1) are missing

in [64].

L4.13 ∼ A4.3. 1 ∼ 7; 2 ∼ 3; 3 ∼ 5; the realizations R(A4.3, 6) and R(A4.3, 8) are missing
in [64].

L4.14 ∼ A4.4. 1 ∼ 6; 2 ∼ 2; 3 ∼ 4; the realizations R(A4.4, 5) and R(A4.4, 7) are missing
in [64].

La,b
4.15 ∼ A

a,b,1
4.5 (−1 � a < b < 1, ab �= 0, e1 = −X2, e2 = X3, e3 = X1, e4 = X4). 1 ∼ 4

(x1 = −x/t, x2 = −y/t, x3 = −1/t); 2 ∼ 2; 3 ∼ 5ε1=0(x1 = −y, x2 = x/t, x3 =
(1 − b)−1 ln |t |); 4 ∼ 6 (x1 = −y, x2 = t, x3 = x); 5 ∼ 5ε1=ε2=1(x1 = −y + e(a−1)t x, x2 =
e(b−1)t x, x3 = t); the realizations R

(
A

a,b,1
4.5 , 5ε2=0

)
and R

(
A

a,b,1
4.5 , 7

)
are missing in [64].

La,a
4.15 ∼ A

1,1,a−1

4.5

( − 1 < a < 1, a �= 0, e1 = X3, e2 = X2, e3 = X1, e4 = X4,L−1,−1
4.15 ∼

L−1,1
4.15

)
. 1 ∼ 4(x1 = x/y, x2 = t/y, x3 = 1/y); 2 ∼ 2; 3 ∼ 7(x1 = x/t, x2 = y, x3 =

a(a − 1)−1 ln |t |); 4 ∼ 6 (x1 = y/t, x2 = 1/t, x3 = x).

La,1
4.15 ∼ A

1,1,a
4.5 (−1 � a < 1, a �= 0, e1 = X1, e2 = X3, e3 = X2, e4 = X4). 1 ∼ 4; 2 ∼ 2;

3 ∼ 6; 4 ∼ 7(x1 = x, x2 = y/t, x3 = (a − 1)−1 ln |t |).
L4.16 ∼ A

1,1,1
4.5 . 1 ∼ 2; 2 ∼ 4; 3 ∼ 7 (the function f (t) can be made equal to t); the realizations

R
(
A

1,1,1
4.5 , 9

)
and R

(
A

1,1,1
4.5 , 10

)
are missing in [64].

La,b
4.17 ∼ A

a,b
4.6 . 1 ∼ 5; 2 ∼ 2; 3 ∼ 4; the realizations R

(
A

a,b
4.6 , 6

)
is missing in [64].

L4.18 ∼ A4.7. 1 ∼ 5 (x1 = x/2, x2 = t, x3 = y); 2 ∼ 4 (x1 = x/2, x2 = t, x3 = y);
3 ∼ 2 (x1 = x/2, x2 = t, x3 = y); 4 ∼ 3 (x1 = y, x2 = x, x3 = −t).

L4.19 ∼ A−1
4.8. 1 ∼ 7; 2 ∼ L8

4.19 and 3 ∼ L1
4.19 (x̃ = t, ỹ = x, t̃ = −y, X̃1 = X1, X̃2 =

−X3, X̃3 = X2, X̃4 = −X4); 4 ∼ L5
4.19(x̃ = t, ỹ = x, t̃ = e−2y, X̃1 = X1, X̃2 = −X3, X̃3 =

X2, X̃4 = −X4); 5 ∼ 4
(
x1 = y, x2 = x, x3 = 1

2 ln |t |); 6 ∼ 3; 7 ∼ 2; 8 ∼ 5.

Lb
4.20 ∼ Ab

4.8 (−1 < b � 1). 1 ∼ 5; 2 ∼ 7 and 3 ∼ 6 (these realizations can be inscribed
in the list of inequivalent realizations iff b �= ±1); 4 ∼ 4 for b �= 1 (x1 = y, x2 = x, x3 =
(1−b)−1 ln |t |) and 4 ∼ Lb.1

4.20 if b = 1; 5 ∼ 3; 6 ∼ 2; the realizations R
(
A0

4.8, 9, C
)

is missing
in [64].

La
4.21 ∼ Aa

4.9 (a � 0). 1 ∼ 2; 2 ∼ 3; the realizations R
(
A0

4.9, 4
)

is missing in [64].

L4.22 ∼ A4.10. 1 ∼ 7; 2 ∼ 6; 3 ∼ 4; 4 ∼ 5; 5 ∼ 3.



Realizations of real low-dimensional Lie algebras 7357

7. Conclusion

We plan to extend this study by including the results of classifying realizations with respect
to the strong equivalence and a more detailed description of algebraic properties of low-
dimensional Lie algebras and the classification technique. We have also begun investigations
into a complete description of differential invariants and operators of invariant differentiation
for all the constructed realizations, as well as ones on applications of the obtained results.
(Let us note that the complete system of differential invariants for all the Lie groups, from
Lie’s classification, of point and contact transformations acting on a two-dimensional complex
space was determined in [45]. The differential invariants of one-parameter groups of local
transformations were exhaustively described in [49] in the case of an arbitrary number
of independent and dependent variables.) Using the above classification of inequivalent
realizations of real Lie algebras of dimension no greater than four, one can solve, in a quite
clear way, the group classification problems for the following classes of differential equations
with real variables:

• ODEs of order up to four;
• systems of two second-order ODEs;
• systems of two, three and four first-order ODEs;
• general systems of two hydrodynamic-type equations with two independent variables;
• first-order PDEs with two independent variables;
• second-order evolutionary PDEs.

All the above classes of differential equations occur frequently in applications (classical, fluid
and quantum mechanics, general relativity, mathematical biology, etc). Third- and fourth-
order ODEs and the second class were investigated, in some way, in [7, 32, 53, 64]. Now we
perform group classification for the third and fourth classes and fourth-order ODEs. Solving
the group classification problem for the last class is necessary in order to construct first-order
differential constraints compatible with well-known nonlinear second-order PDEs.

Our results can also be applied to solving the interesting and important problem of studying
finite-dimensional Lie algebras of first-order differential operators. (There are a considerable
number of papers devoted to this problem, see e.g., [2, 15, 35].)

It is obvious that our classification can be transformed to classification of realizations
of complex Lie algebras of dimension no greater than four in vector fields on a space of an
arbitrary (finite) number of complex variables. We also hope to solve the analogous problem
for five-dimensional algebras in the near future.
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